Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Eur J Immunol ; : e2350873, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501878

RESUMO

Resident memory T (TRM ) cells have been recently established as an important subset of memory T cells that provide early and essential protection against reinfection in the absence of circulating memory T cells. Recent findings showing that TRM expand in vivo after repeated antigenic stimulation indicate that these memory T cells are not terminally differentiated. This suggests an opportunity for in vitro TRM expansion to apply in an immunotherapy setting. However, it has also been shown that TRM may not maintain their identity and form circulating memory T cells after in vivo restimulation. Therefore, we set out to determine how TRM respond to antigenic activation in culture. Using Listeria monocytogenes and LCMV infection models, we found that TRM from the intraepithelial compartment of the small intestine expand in vitro after antigenic stimulation and subsequent resting in homeostatic cytokines. A large fraction of the expanded TRM retained their phenotype, including the expression of key TRM markers CD69 and CD103 (ITGAE). The optimal culture of TRM required low O2 pressure to maintain the expression of these and other TRM -associated molecules. Expanded TRM retained their effector capacity to produce cytokines after restimulation, but did not acquire a highly glycolytic profile indicative of effector T cells. The proteomic analysis confirmed TRM profile retention, including expression of TRM -related transcription factors, tissue retention factors, adhesion molecules, and enzymes involved in fatty acid metabolism. Collectively, our data indicate that limiting oxygen conditions supports in vitro expansion of TRM cells that maintain their TRM phenotype, at least in part, suggesting an opportunity for therapeutic strategies that require in vitro expansion of TRM .

2.
Blood Adv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513134

RESUMO

Sitosterolemia is a rare autosomal-recessive genetic disorder in which patients develop hypercholesterolemia, and may exhibit abnormal hematologic and/or liver test results. In this disease, dysfunction of either ABCG5 or ABCG8 results in intestinal hyperabsorption of all sterols, including cholesterol and more specifically plant sterols or xenosterols, as well as in the impaired ability to excrete xenosterols into the bile. It remains unknown how and why some patients develop hematologic abnormalities. Only a few unrelated patients with hematologic abnormalities at the time of diagnosis have been reported. Here, we report on two unrelated pedigrees who were believed to have chronic immune thrombocytopenia as most prominent feature. Both consanguineous families showed recessive gene variants in ABCG5, that were associated with disease by in-silico protein structure analysis as well as clinical segregation. Hepatosplenomegaly was absent. Thrombopoietin levels and megakaryocyte numbers in bone marrow were normal. Metabolic analysis confirmed the presence of strongly elevated plasma levels of xenosterols. Potential platelet proteomic aberrations were longitudinally assessed following dietary restrictions combined with the administration of the sterol absorption inhibitor ezetimibe. No significant effects on platelet protein content before and after onset of treatment were demonstrated. Although we cannot exclude that lipotoxicity has a direct and platelet-specific impact in patients with sitosterolemia, our data suggest that the thrombocytopenia is neither caused by a lack of megakaryocytes nor driven by proteomic aberrations of the platelets themselves.

3.
Front Immunol ; 15: 1344761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487529

RESUMO

Background: The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method: We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results: Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion: Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.


Assuntos
Neutrófilos , Quinases da Família src , Humanos , Neutrófilos/metabolismo , Quinases da Família src/metabolismo , Fibronectinas/metabolismo , Antígenos CD18/metabolismo , Adesão Celular , Actinas/metabolismo , Fosfoproteínas/metabolismo , Antígeno de Macrófago 1/metabolismo
4.
Blood Cancer J ; 13(1): 125, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591861

RESUMO

MYD88 is the key signaling adaptor-protein for Toll-like and interleukin-1 receptors. A somatic L265P mutation within the Toll/interleukin-1 receptor (TIR) domain of MYD88 is found in 90% of Waldenström macroglobulinemia cases and in a significant subset of diffuse large B-cell lymphomas. MYD88-L265P strongly promotes NF-κB pathway activation, JAK-STAT signaling and lymphoma cell survival. Previous studies have identified other residues of the TIR-domain crucially involved in NF-κB activation, including serine 257 (S257), indicating a potentially important physiological role in the regulation of MYD88 activation. Here, we demonstrate that MYD88 S257 is phosphorylated in B-cell lymphoma cells and that this phosphorylation is required for optimal TLR-induced NF-κB activation. Furthermore, we demonstrate that a phosphomimetic MYD88-S257D mutant promotes MYD88 aggregation, IRAK1 phosphorylation, NF-κB activation and cell growth to a similar extent as the oncogenic L265P mutant. Lastly, we show that expression of MYD88-S257D can rescue cell growth upon silencing of endogenous MYD88-L265P expression in lymphoma cells addicted to oncogenic MYD88 signaling. Our data suggest that the L265P mutation promotes TIR domain homodimerization and NF-κB activation by copying the effect of MY88 phosphorylation at S257, thus providing novel insights into the molecular mechanism underlying the oncogenic activity of MYD88-L265P in B-cell malignancies.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B , Fosforilação
5.
Commun Biol ; 6(1): 525, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188730

RESUMO

Vascular endothelial cells (ECs) form a dynamic interface between blood and tissue and play a crucial role in the progression of vascular inflammation. Here, we aim to dissect the system-wide molecular mechanisms of inflammatory endothelial-cytokine responses. Applying an unbiased cytokine library, we determined that TNFα and IFNγ induced the largest EC response resulting in distinct proteomic inflammatory signatures. Notably, combined TNFα + IFNγ stimulation induced an additional synergetic inflammatory signature. We employed a multi-omics approach to dissect these inflammatory states, combining (phospho-) proteome, transcriptome and secretome and found, depending on the stimulus, a wide-array of altered immune-modulating processes, including complement proteins, MHC complexes and distinct secretory cytokines. Synergy resulted in cooperative activation of transcript induction. This resource describes the intricate molecular mechanisms that are at the basis of endothelial inflammation and supports the adaptive immunomodulatory role of the endothelium in host defense and vascular inflammation.


Assuntos
Citocinas , Fator de Necrose Tumoral alfa , Humanos , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Proteômica , Multiômica , Inflamação/metabolismo , Endotélio Vascular
6.
Transfusion ; 63(3): 564-573, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36722460

RESUMO

BACKGROUND: Biomonitoring may provide important insights into the impact of a whole blood donation for individual blood donors. STUDY DESIGN AND METHODS: Here, we used unbiased mass spectrometry (MS)-based proteomics to assess longitudinal changes in the global plasma proteome, after a single blood donation for new and regular donors. Subsequently, we compared plasma proteomes of 76 male and female whole blood donors, that were grouped based on their ferritin and hemoglobin (Hb) levels. RESULTS: The longitudinal analysis showed limited changes in the plasma proteomes of new and regular donors after a whole blood donation during a 180-day follow-up period, apart from a significant short-term decrease in fibronectin. No differences were observed in the plasma proteomes of donors with high versus low Hb and/or ferritin levels. Plasma proteins with the highest variation between and within donors included pregnancy zone protein, which was associated with sex, Alfa 1-antitrypsin which was associated with the allelic variation, and Immunoglobulin D. Coexpression analysis revealed clustering of proteins that are associated with platelet, red cell, and neutrophil signatures as well as with the complement system and immune responses, including a prominent correlating cluster of immunoglobulin M (IgM), immunoglobulin J chain (JCHAIN), and CD5 antigen-like (CD5L). DISCUSSION: Overall, our proteomic approach shows that whole blood donation has a limited impact on the plasma proteins measured. Our findings suggest that plasma profiling can be successfully employed to consistently detect proteins and protein complexes that reflect the functionality and integrity of platelets, red blood cells, and immune cells in blood donors and thus highlights its potential use for donor health monitoring.


Assuntos
Doação de Sangue , Proteoma , Humanos , Masculino , Feminino , Proteômica , Eritrócitos/química , Doadores de Sangue , Ferritinas , Hemoglobinas/análise
7.
J Thromb Haemost ; 21(2): 359-372.e3, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36700500

RESUMO

BACKGROUND: Inherited platelet disorders (IPDs) are a heterogeneous group of rare diseases that are caused by the defects in early megakaryopoiesis, proplatelet formation, and/or mature platelet function. Although genomic sequencing is increasingly used to identify genetic variants underlying IPD, this technique does not disclose resulting molecular changes that impact platelet function. Proteins are the functional units that shape platelet function; however, insights into how variants that cause IPDs impact platelet proteomes are limited. OBJECTIVES: The objective of this study was to profile the platelet proteomics signatures of IPDs. METHODS: We performed unbiased label-free quantitative mass spectrometry (MS)-based proteome profiling on platelets of 34 patients with IPDs with variants in 13 ISTH TIER1 genes that affect different stages of platelet development. RESULTS: In line with the phenotypical heterogeneity between IPDs, proteomes were diverse between IPDs. We observed extensive proteomic alterations in patients with a GFI1B variant and for genetic variants in genes encoding proteins that impact cytoskeletal processes (MYH9, TUBB1, and WAS). Using the diversity between IPDs, we clustered protein dynamics, revealing disrupted protein-protein complexes. This analysis furthermore grouped proteins with similar cellular function and location, classifying mitochondrial protein constituents and identifying both known and putative novel alpha granule associated proteins. CONCLUSIONS: With this study, we demonstrate a MS-based proteomics perspective to IPDs. By integrating the effects of IPDs that impact different aspects of platelet function, we dissected the biological contexts of protein alterations to gain further insights into the biology of platelet (dys)function.


Assuntos
Transtornos Plaquetários , Proteômica , Humanos , Proteoma/metabolismo , Transtornos Plaquetários/diagnóstico , Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Plaquetas/metabolismo , Trombopoese
8.
PLoS One ; 17(7): e0271637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877767

RESUMO

OBJECTIVE: Patients admitted to the Intensive Care Unit (ICU) oftentimes show immunological signs of immune suppression. Consequently, immune stimulatory agents have been proposed as an adjunctive therapy approach in the ICU. The objective of this study was to determine the relationship between the degree of immune suppression and systemic inflammation in patients shortly after admission to the ICU. Design: An observational study in two ICUs in the Netherlands. METHODS: The capacity of blood leukocytes to produce cytokines upon stimulation with lipopolysaccharide (LPS) was measured in 77 patients on the first morning after ICU admission. Patients were divided in four groups based on quartiles of LPS stimulated tumor necrosis factor (TNF)-α release, reflecting increasing extents of immune suppression. 15 host response biomarkers indicative of aberrations in inflammatory pathways implicated in sepsis pathogenesis were measured in plasma. RESULTS: A diminished capacity of blood leukocytes to produce TNF-α upon stimulation with LPS was accompanied by a correspondingly reduced ability to release of IL-1ß and IL-6. Concurrently measured plasma concentrations of host response biomarkers demonstrated that the degree of reduction in TNF-α release by blood leukocytes was associated with increasing systemic inflammation, stronger endothelial cell activation, loss of endothelial barrier integrity and enhanced procoagulant responses. CONCLUSIONS: In patients admitted to the ICU the strongest immune suppression occurs in those who simultaneously display signs of stronger systemic inflammation. These findings may have relevance for the selection of patients eligible for administration of immune enhancing agents. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01905033.


Assuntos
Estado Terminal , Lipopolissacarídeos , Biomarcadores , Humanos , Inflamação , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa
9.
Haematologica ; 107(8): 1827-1839, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081689

RESUMO

Von Willebrand factor (VWF) is a multimeric hemostatic protein primarily synthesized in endothelial cells. VWF is stored in endothelial storage organelles, the Weibel-Palade bodies (WPB), whose biogenesis strongly depends on VWF anterograde trafficking and Golgi architecture. Elongated WPB morphology is correlated to longer VWF strings with better adhesive properties. We previously identified the SNARE SEC22B, which is involved in anterograde endoplasmic reticulum-to-Golgi transport, as a novel regulator of WPB elongation. To elucidate novel determinants of WPB morphology we explored endothelial SEC22B interaction partners in a mass spectrometry-based approach, identifying the Golgi SNARE Syntaxin 5 (STX5). We established STX5 knockdown in endothelial cells using shRNA-dependent silencing and analyzed WPB and Golgi morphology, using confocal and electron microscopy. STX5-depleted endothelial cells exhibited extensive Golgi fragmentation and decreased WPB length, which was associated with reduced intracellular VWF levels, and impaired stimulated VWF secretion. However, the secretion-incompetent organelles in shSTX5 cells maintained WPB markers such as Angiopoietin 2, P-selectin, Rab27A, and CD63. In brief, we identified SNARE protein STX5 as a novel regulator of WPB biogenesis.


Assuntos
Corpos de Weibel-Palade , Fator de von Willebrand , Tamanho Corporal , Células Cultivadas , Células Endoteliais/metabolismo , Exocitose , Humanos , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
10.
Thromb Res ; 210: 6-11, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954402

RESUMO

BACKGROUND: Many patients who are diagnosed with coronavirus disease 2019 (COVID-19) suffer from venous thromboembolic complications despite the use of stringent anticoagulant prophylaxis. Studies on the exact mechanism(s) underlying thrombosis in COVID-19 are limited as animal models commonly used to study venous thrombosis pathophysiology (i.e. rats and mice) are naturally not susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ferrets are susceptible to SARS-CoV-2 infection, successfully used to study virus transmission, and have been previously used to study activation of coagulation and thrombosis during influenza virus infection. OBJECTIVES: This study aimed to explore the use of (heat-inactivated) plasma and lung material from SARS-CoV-2-inoculated ferrets studying COVID-19-associated changes in coagulation and thrombosis. MATERIAL AND METHODS: Histology and longitudinal plasma profiling using mass spectrometry-based proteomics approach was performed. RESULTS: Lungs of ferrets inoculated intranasally with SARS-CoV-2 demonstrated alveolar septa that were mildly expanded by macrophages, and diffuse interstitial histiocytic pneumonia. However, no macroscopical or microscopical evidence of vascular thrombosis in the lungs of SARS-CoV-2-inoculated ferrets was found. Longitudinal plasma profiling revealed minor differences in plasma protein profiles in SARS-CoV-2-inoculated ferrets up to 2 weeks post-infection. The majority of plasma coagulation factors were stable and demonstrated a low coefficient of variation. CONCLUSIONS: We conclude that while ferrets are an essential and well-suited animal model to study SARS-CoV-2 transmission, their use to study SARS-CoV-2-related changes relevant to thrombotic disease is limited.


Assuntos
COVID-19 , Trombose , Trombose Venosa , Animais , Proteínas Sanguíneas , Furões , Humanos , Pulmão , Camundongos , Ratos , SARS-CoV-2
11.
Clin Exp Immunol ; 205(2): 222-231, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33866542

RESUMO

Sepsis is a complex syndrome related to an infection-induced exaggerated inflammatory response, which is associated with a high mortality. Granzymes (Gzm) are proteases mainly found in cytotoxic lymphocytes that not only have a role in target cell death, but also as mediators of infection and inflammation. In this study we sought to analyse the intracellular expression of GzmA, B, M and K by flow cytometry in diverse blood lymphocyte populations from 22 sepsis patients, 12 non-infected intensive care unit (ICU) patients and 32 healthy controls. Additionally, we measured GzmA and B plasma levels. Both groups of patients presented decreased percentage of natural killer (NK) cells expressing GzmA, B and M relative to healthy controls, while sepsis patients showed an increased proportion of CD8+ T cells expressing GzmB compared to controls. Expression of GzmK remained relatively unaltered between groups. Extracellular levels of GzmB were increased in non-infected ICU patients relative to sepsis patients and healthy controls. Our results show differential alterations in intracellular expression of Gzm in sepsis patients and non-infected critically ill patients compared to healthy individuals depending on the lymphocyte population and on the Gzm.


Assuntos
Granzimas/metabolismo , Subpopulações de Linfócitos/metabolismo , Sepse/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Estado Terminal , Feminino , Humanos , Células Matadoras Naturais/metabolismo , Contagem de Linfócitos/métodos , Masculino , Pessoa de Meia-Idade
12.
Blood Adv ; 5(2): 549-564, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496751

RESUMO

Gray platelet syndrome (GPS) is an autosomal recessive bleeding disorder characterized by a lack of α-granules in platelets and progressive myelofibrosis. Rare loss-of-function variants in neurobeachin-like 2 (NBEAL2), a member of the family of beige and Chédiak-Higashi (BEACH) genes, are causal of GPS. It is suggested that BEACH domain containing proteins are involved in fusion, fission, and trafficking of vesicles and granules. Studies in knockout mice suggest that NBEAL2 may control the formation and retention of granules in neutrophils. We found that neutrophils obtained from the peripheral blood from 13 patients with GPS have a normal distribution of azurophilic granules but show a deficiency of specific granules (SGs), as confirmed by immunoelectron microscopy and mass spectrometry proteomics analyses. CD34+ hematopoietic stem cells (HSCs) from patients with GPS differentiated into mature neutrophils also lacked NBEAL2 expression but showed similar SG protein expression as control cells. This is indicative of normal granulopoiesis in GPS and identifies NBEAL2 as a potentially important regulator of granule release. Patient neutrophil functions, including production of reactive oxygen species, chemotaxis, and killing of bacteria and fungi, were intact. NETosis was absent in circulating GPS neutrophils. Lack of NETosis is suggested to be independent of NBEAL2 expression but associated with SG defects instead, as indicated by comparison with HSC-derived neutrophils. Since patients with GPS do not excessively suffer from infections, the consequence of the reduced SG content and lack of NETosis for innate immunity remains to be explored.


Assuntos
Síndrome da Plaqueta Cinza , Animais , Plaquetas , Proteínas Sanguíneas , Grânulos Citoplasmáticos , Síndrome da Plaqueta Cinza/genética , Humanos , Camundongos , Neutrófilos
13.
Elife ; 92020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33305733

RESUMO

The extent of non-coding RNA alterations in patients with sepsis and their relationship to clinical characteristics, soluble mediators of the host response to infection, as well as an advocated in vivo model of acute systemic inflammation is unknown. Here we obtained whole blood from 156 patients with sepsis and 82 healthy subjects among whom eight were challenged with lipopolysaccharide in a clinically controlled setting (human endotoxemia). Via next-generation microarray analysis of leukocyte RNA we found that long non-coding RNA and, to a lesser extent, small non-coding RNA were significantly altered in sepsis relative to health. Long non-coding RNA expression, but not small non-coding RNA, was largely recapitulated in human endotoxemia. Integrating RNA profiles and plasma protein levels revealed known as well as previously unobserved pathways, including non-sensory olfactory receptor activity. We provide a benchmark dissection of the blood leukocyte 'regulome' that can facilitate prioritization of future functional studies.


Assuntos
Estado Terminal , Leucócitos/metabolismo , RNA não Traduzido/metabolismo , Sepse/metabolismo , Idoso , Estudos de Casos e Controles , Endotoxemia/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma
14.
Crit Care ; 24(1): 423, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660590

RESUMO

BACKGROUND: Dysregulation of the host immune response is a pathognomonic feature of sepsis. Abnormal physiological conditions are understood to shift efficient linear splicing of protein-coding RNA towards non-canonical splicing, characterized by the accumulation of non-coding circularized (circ)RNA. CircRNAs remain unexplored in specific peripheral blood mononuclear cells (PBMCs) during sepsis. We here sought to identify and characterize circRNA expression in specific PBMCs of patients with sepsis due to community-acquired pneumonia (CAP) relative to healthy subjects. METHODS: The study comprised a discovery cohort of six critically ill patients diagnosed with sepsis due to community-acquired pneumonia and four (age, gender matched) healthy subjects. PBMCs were isolated, and fluorescence-activated cell sorting was used to purify CD14+ monocytes, CD4+, CD8+ T cells, and CD19+ B cells for RNA sequencing. CD14+ monocytes from independent six healthy volunteers were purified, and total RNA was treated with or without RNase R. RESULTS: RNA sequencing of sorted CD14+ monocytes, CD4+, CD8+ T cells, and CD19+ B cells from CAP patients and healthy subjects identified various circRNAs with predominantly cell-specific expression patterns. CircRNAs were expressed to a larger extent in monocytes than in CD4+, CD8+ T cells, or B cells. Cells from CAP patients produced significantly higher levels of circRNA as compared to healthy subjects. Considering adjusted p values, circVCAN (chr5:83519349-83522309) and circCHD2 (chr15:93000512-93014909) levels in monocytes were significantly altered in sepsis. Functional inference per cell-type uncovered pathways mainly attuned to cell proliferation and cytokine production. In addition, our data does not support a role for these circRNAs in microRNA sequestration. Quantitative PCR analysis in purified monocytes from an independent group of healthy volunteers confirmed the existence of circVCAN and circCHD2. CONCLUSIONS: We provide a benchmark map of circRNA expression dynamics in specific immune cell subsets of sepsis patients secondary to CAP. CircRNAs were more abundant in immune cells of sepsis patients relative to healthy subjects. Further studies evaluating circRNA expression in larger cohorts of sepsis patients are warranted.


Assuntos
Leucócitos Mononucleares/metabolismo , RNA Circular/análise , Sepse/sangue , Adulto , Estado Terminal/classificação , Estado Terminal/epidemiologia , Feminino , Humanos , Leucócitos Mononucleares/microbiologia , Masculino , Pessoa de Meia-Idade , RNA Circular/sangue , Sepse/fisiopatologia
15.
Mol Cell Proteomics ; 19(7): 1179-1192, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32332107

RESUMO

The vessel wall is continuously exposed to hemodynamic forces generated by blood flow. Endothelial mechanosensors perceive and translate mechanical signals via cellular signaling pathways into biological processes that control endothelial development, phenotype and function. To assess the hemodynamic effects on the endothelium on a system-wide level, we applied a quantitative mass spectrometry approach combined with cell surface chemical footprinting. SILAC-labeled endothelial cells were subjected to flow-induced shear stress for 0, 24 or 48 h, followed by chemical labeling of surface proteins using a non-membrane permeable biotin label, and analysis of the whole proteome and the cell surface proteome by LC-MS/MS analysis. These studies revealed that of the >5000 quantified proteins 104 were altered, which were highly enriched for extracellular matrix proteins and proteins involved in cell-matrix adhesion. Cell surface proteomics indicated that LAMA4 was proteolytically processed upon flow-exposure, which corresponded to the decreased LAMA4 mass observed on immunoblot. Immunofluorescence microscopy studies highlighted that the endothelial basement membrane was drastically remodeled upon flow exposure. We observed a network-like pattern of LAMA4 and LAMA5, which corresponded to the localization of laminin-adhesion molecules ITGA6 and ITGB4. Furthermore, the adaptation to flow-exposure did not affect the inflammatory response to tumor necrosis factor α, indicating that inflammation and flow trigger fundamentally distinct endothelial signaling pathways with limited reciprocity and synergy. Taken together, this study uncovers the blood flow-induced remodeling of the basement membrane and stresses the importance of the subendothelial basement membrane in vascular homeostasis.


Assuntos
Membrana Basal/metabolismo , Circulação Sanguínea , Células Endoteliais/metabolismo , Integrinas/metabolismo , Laminina/metabolismo , Circulação Sanguínea/fisiologia , Células Cultivadas , Cromatografia Líquida , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Ontologia Genética , Hemodinâmica , Humanos , Cadeias alfa de Integrinas/metabolismo , Integrina alfa6/metabolismo , Cadeias beta de Integrinas/metabolismo , Integrina beta4/metabolismo , Mapas de Interação de Proteínas/fisiologia , Proteômica , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/farmacologia
16.
Haematologica ; 105(6): 1695-1703, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31558672

RESUMO

In the complex with von Willebrand factor (VWF) factor VIII (FVIII) is protected from rapid clearance from circulation. Although it has been established that the FVIII binding site resides in the N-terminal D'-D3 domains of VWF, detailed information about the amino acid regions that contribute to FVIII binding is still lacking. In the present study, hydrogen-deuterium exchange mass spectrometry was employed to gain insight into the FVIII binding region on VWF. To this end, time-dependent deuterium incorporation was assessed in D'-D3 and the FVIII-D'-D3 complex. Data showed reduced deuterium incorporation in the D' region Arg782-Cys799 in the FVIII-D'-D3 complex compared to D'-D3. This implies that this region interacts with FVIII. Site-directed mutagenesis of the six charged amino acids in Arg782-Cys799 into alanine residues followed by surface plasmon resonance analysis and solid phase binding studies revealed that replacement of Asp796 affected FVIII binding. A marked decrease in FVIII binding was observed for the D'-D3 Glu787Ala variant. The same was observed for D'-D3 variants in which Asp796 and Glu787 were replaced by Asn796 and Gln787. Site-directed mutagenesis of Leu786, which together with Glu787 and Cys789 forms a short helical region in the crystal structure of D'-D3, also had a marked impact on FVIII binding. The combined results show that the amino acid region Arg782-Cys799 is part of a FVIII binding surface. Our study provides new insight into FVIII-VWF complex formation and defects therein that may be associated with bleeding caused by markedly reduced levels of FVIII.


Assuntos
Fator VIII , Fator de von Willebrand , Sítios de Ligação , Fator VIII/genética , Hemorragia , Humanos , Domínios Proteicos , Fator de von Willebrand/genética
17.
Cell Rep ; 29(8): 2505-2519.e4, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747616

RESUMO

Human neutrophilic granulocytes form the largest pool of innate immune cells for host defense against bacterial and fungal pathogens. The dynamic changes that accompany the metamorphosis from a proliferating myeloid progenitor cell in the bone marrow into a mature non-dividing polymorphonuclear blood cell have remained poorly defined. Using mass spectrometry-based quantitative proteomics combined with transcriptomic data, we report on the dynamic changes of five developmental stages in the bone marrow and blood. Integration of transcriptomes and proteome unveils highly dynamic and differential interactions between RNA and protein kinetics during human neutrophil development, which can be linked to functional maturation of typical end-stage blood neutrophil killing activities.


Assuntos
Neutrófilos/citologia , Neutrófilos/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Granulócitos/citologia , Granulócitos/metabolismo , Hematopoese/genética , Hematopoese/fisiologia , Humanos , Proteômica/métodos
18.
Intensive Care Med Exp ; 7(1): 58, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664603

RESUMO

BACKGROUND: Advanced age is associated with increased mortality in acute respiratory distress syndrome (ARDS) patients. Preclinical studies suggest that the host response to an injurious challenge is age-dependent. In ARDS patients, we investigated whether the association between age and mortality is mediated through age-related differences in the host response. METHODS: This was a prospective longitudinal observational cohort study, performed in the ICUs of two university-affiliated hospitals. The systemic host response was characterized in three predefined age-groups, based on the age-tertiles of the studied population: young (18 to 54 years, N = 209), middle-aged (55 to 67 years, N = 213), and elderly (67 years and older, N = 196). Biomarkers of inflammation, endothelial activation, and coagulation were determined in plasma obtained at the onset of ARDS. The primary outcome was 90-day mortality. A mediation analysis was performed to examine whether age-related differences in biomarker levels serve as potential causal pathways mediating the association between age and mortality. RESULTS: Ninety-day mortality rates were 30% (63/209) in young, 37% (78/213) in middle-aged, and 43% (84/196) in elderly patients. Middle-aged and elderly patients had a higher risk of death compared to young patients (adjusted odds ratio, 1.5 [95% confidence interval 1.0 to 2.3] and 2.1 [1.4 to 3.4], respectively). Relative to young patients, the elderly had significantly lower systemic levels of biomarkers of inflammation and endothelial activation. Tissue plasminogen activator, a marker of coagulation, was the only biomarker that showed partial mediation (proportion of mediation, 10 [1 to 28] %). CONCLUSION: Little evidence was found that the association between age and mortality in ARDS patients is mediated through age-dependent differences in host response pathways. Only tissue plasminogen activator was identified as a possible mediator of interest. TRIAL REGISTRATION: This trial was registered at ClinicalTrials.gov (identifier NCT01905033 , date of registration July 23, 2013).

19.
J Proteomics ; 205: 103417, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201948

RESUMO

The endothelium stores the hemostatic protein Von Willebrand factor (VWF) in endothelial storage organelles called Weibel-Palade bodies (WPBs). During maturation, WPBs recruit a complex of Rab GTPases and effectors that associate with components of the SNARE machinery that control WPB exocytosis. Recent genome wide association studies have found links between genetic variations in the SNAREs syntaxin-2 (STX2) and syntaxin binding protein 5 (STXBP5) and VWF plasma levels, suggesting a role for SNARE proteins in regulating VWF release. Moreover, we have previously identified the SNARE proteins syntaxin-3 and STXBP1 as regulators of WPB release. In this study we used an unbiased iterative interactomic approach to identify new components of the WPB exocytotic machinery. An interactome screen of syntaxin-3 identifies a number of SNAREs and SNARE associated proteins (STXBP2, STXBP5, SNAP23, NAPA and NSF). We show that the VAMP-like domain (VLD) of STXBP5 is indispensable for the interaction with SNARE proteins and this capacity of the VLD could be exploited to identify an extended set of novel endothelial SNARE interactors of STXBP5. In addition, an STXBP5 variant with an N436S substitution, which is linked to lower VWF plasma levels, does not show a difference in interactome when compared with WT STXBP5. SIGNIFICANCE: The hemostatic protein Von Willebrand factor plays a pivotal role in vascular health: quantitative or qualitative deficiencies of VWF can lead to bleeding, while elevated levels of VWF are associated with increased risk of thrombosis. Tight regulation of VWF secretion from WPBs is therefore essential to maintain vascular homeostasis. We used an unbiased proteomic screen to identify new components of the regulatory machinery that controls WPB exocytosis. Our data expand the endothelial SNARE protein network and provide a set of novel candidate WPB regulators that may contribute to regulation of VWF plasma levels and vascular health.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mapas de Interação de Proteínas , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Corpos de Weibel-Palade/metabolismo , Células Cultivadas , Exocitose/fisiologia , Células HEK293 , Humanos , Mapas de Interação de Proteínas/fisiologia , Proteômica , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...